Coding Challenge: Maximum Sum Circular Subarray
Maximum Sum Circular Subarray
In today’s post, we’re tackling a challenging problem: the Maximum Sum Circular Subarray. This is a great problem to test your understanding of algorithms and data structures, specifically dealing with arrays and subarray computations.
Problem Description
Given a circular integer array nums
of length n
, your task is to return the maximum possible sum of a non-empty subarray of nums
. Remember, in a circular array, the end of the array connects to the beginning, creating a loop-like structure.
Example:
Input: nums = [5, -3, 5] Output: 10 Explanation: The subarray [5, 5] has the maximum sum of 10.
Solution Approach
The solution hinges on a key insight: the maximum circular subarray sum can be either the maximum subarray sum (computed using Kadane’s algorithm) or the total sum of the array minus the minimum subarray sum.
Algorithm Steps
- Compute Total Sum: First, calculate the total sum of the array.
- Maximum Subarray Sum: Use Kadane’s algorithm to find the maximum subarray sum.
- Minimum Subarray Sum: Invert the elements of the array and use Kadane’s algorithm to find the minimum subarray sum.
- Final Calculation: The maximum circular subarray sum is either the maximum subarray sum or the total sum minus the minimum subarray sum, whichever is greater.
- Negative Numbers Handling: If all numbers are negative, return the maximum subarray sum.
Python Implementation
def maxSubarraySumCircular(nums):
def kadane(gen):
ans = cur = float('-inf')
for x in gen:
cur = x + max(cur, 0)
ans = max(ans, cur)
return ans
total = sum(nums)
max_sum = kadane(nums)
min_sum = -kadane(-x for x in nums[1:])
min_sum2 = -kadane(-x for x in nums[:-1])
return max(max_sum, total + min_sum, total + min_sum2) if max_sum > 0 else max_sum
print(maxSubarraySumCircular([5, -3, 5])) # Output: 10
Conclusion
This problem is a great exercise in understanding how to manipulate subarrays and use dynamic programming techniques like Kadane’s algorithm. It’s a reminder of the elegance and efficiency you can achieve with a well-thought-out algorithm.
Happy coding!